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, •Preface

Goodness-of-fit tests are developed for the Logistic

* distribution when the location and scale parameters are un-

known. The Kolmogorov-Smirnov, Anderson-Darl ing and Cramer-

von Mises statistics are used to develop tables of critical

values to be used in goodness-of-fit hypothesis testing. A

power study is conducted to compare the Kolmogorov-Smirnov,

Anderson-Darling and Cramer-von Mises goodness-of-fit tests.

I would like to thank my advisor, Capt. Brian Woodruff,

whose continual help and encouragement were instrumental to the
S"

successful completion of my thesis.

In addition, I would like to thank my readers, Dr. Albert H.

Moore and Dr. James Dunne; their advice and guidance was very

helpful.

Finally, I would like to express my appreciation to my

classmates in general, and Lt. Jim Keffer in particular, for

their help and encouragement during the preparation of my thesis.

John D. Yoder
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Abstract

The method of maximum likelihood is used to determine

invariant estimates of the unknown location and scale para-

meters of a sample from the Logistic distribution. The par-

tial derivatives of the likelihood function can not be solved

explicitly, therefore the Secant method is used to iteratively

determine the roots of the partial derivatives. Using these

estimates, modified Kolmogorov-Smirnov, Anderson-Darling and

Cramer-von Mises statistics are calculated for a given sample.

This procedure is repeated 5000 times for sample sizes of

n= 5(5)30. The 80th, 85th, 90th, 95th and 99th percentiles of

the distribution of each statistic, for each sample size, is

then calculated. These values are then used to generate

tables of critical values for the Logistic distribution with

unknown location and scale parameters. A power comparison

between the three tests is performed using samples from va-

rious distributions..

The Secant method requires 'good" initial estimates of

the parameters in order to converge. This thesis uses the

sample mean and standard deviation as initial estimates. In

four of the total 30,000 samples used, these initial estimates

did not allow convergence. While discarding these samples

biases the theoretical results, it was determined that discar-

ding these samples would not biases the numerical results.

This does however place a constraint on using the Secant

v iii



method with respect to obtaining maximum likelihood estimates

of the parameters. The power of these tests for non-symmetri -

cal1y convex distributions is very good. However, for symmet-

rically convex distributions, the power ranges from moderate to

only, slightly more than the significance level.

ix
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MODIFIED KOLMOGOROV-SMIRNOV, ANDERSON-DARLING AND
CRAMER-VON MISES TESTS FOR THE LOGISTIC DISTRIBUTION

WITH UNKNOWN LOCATION AND SCALE PARAMETERS

I. INTRODUCTION

The Air Force is highly interested in the reliability and

maintainability of proposed systems. When no historical data

exits, statistical and probabilistic measures are often the

only approaches possible in gathering meaningful information

to aid the decision maker. The mean time to failure and the

failure rate of a proposed systn are usually unknown but

important considerations in the decision making process.

Various methods can be used to collect, for example, time

• ... to failure data from a experimental or prototype system. The

data can then be compared to a theoretical probability distri-

bution. How well the distribution of the experimental data

matchs the theoretical distribution is known as a "goodness-

of-fit test". If such tests show that the distribution of

the experimental data "fits" the theoretical distribution

well, the hypothesized theoretical distribution can be used in

simulation modeling, for example, to predict the failure rate

*of the proposed system. The Gamma distribution has often been

used in such studies, and its hazard function approaches a

constant value. The hazard function of the Logistic distribu-

tion also approaches a constant value, as time approachs

infinity, and is therefore a useful alternative in some relia-

bility and life-testing situations.

o•1
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BACKGROUND

There are several classical goodness-of-fit tests, such

as the Chi-Square test, the Kolmogorov-Smirnov test (KS), the

Anderson-Darling test (A2), and the Cramer-von Mises test (W2).

Of these tests, the two most popular are the Chi-Square and

the Kolmogorov-Smirnov tests. The Chi-square test compares

the observed frequencies of the empirical distribution to the

expected frequencies of the hypothesized distribution. How-

ever, because it groups observations (with a minimum of five

observations per cell) it is restricted to larger samples

- (2:73). The KS test, on the other hand, has no such restric-

tion. This test uses as a measure of fit the absolute differ-

ence between the empirical distribution and the hypothesized

distribution. Because of this, no grouping of data is re-

quired and smaller samples sizes can be accommodated. The

classical KS goodness-of-fit test is valid to test whether a

set of observations comes from a completely specified distribu-

.tion.

However, in practical applications the distribution is

seldom fully specified. In cases where the parameters must be

estimated from the sample, the Chi-square test is easily adjusted

Ui by reducing the number of degrees of freedom by the number of

parameters estimated. The KS test can also be modified to

4- consider the case where the parameters are estimated from the

sample data. H.W. Lilliefors developed a modified KS goodness-

of-fit test for the Normal distribution (30) in 1967 and for

m 2



the Exponential distribution (31) in 1969. R. Cortes deve-

loped a modified KS test in 1980 (16) to be used with the

Gamma and Weibull dis ibutions. J.G. Bush, in 1981, developed

modified A 2 and W2 tests to be used with the Weibull distribu-

tion (13). In 1982 P.J. Viviano developed modified KS, A
2

and W2 tests for the Gamma distribution (42). The KS test,

2 2
as well as the A and W tests, were modified for the Uniform,

Normal, Laplace, Exponential and Cauchy distributions by Green

and Hegazy (18) in 1976. In 1981, Koutrouvelis and Keller-

meier developed a goodness-of-fit test based on the empirical

characteristic function when the characteristic function is a

member of a specified parametric family of such functions

(28). Masaaki, Hiroshi and Shigeo, in 1980, developed a

goodness-of-fit test for the extreme value distribution based

on the entropy of the sample data (32).

EMPIRICAL DISTRIBUTION FUNCTION

A class of statistics based on a comparison between the

theoretical cumulative distribution function F(x) and the

sample cumulative distribution function S(x) is generally

called empirical distribution function (EDF) statistics. His-

torically, EDF statistics are used in cases were parameters

are estimated from the sample observations. The EDF of a

random sample is defined as

3
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number of values 1 x
S(x) = (1)

total number of values

When there are n observations in the sample, S(x) is a step

function with 1/n jumps at each order statistic of the sample

(19:73). When the n observations are arranged in ascending

order, S(x) is defined by Eq (2)

0 ~x S x

S(x)= i/n x 5 x S x i= 12, .. n-1 (2)

" x

Since S(x) yields the proportion of the sample less than or

equal to x, it is a good estimate of the hypothesized cumula-

tive distribution function F(x). It should be noted that

because the cumulative distribution is not fully specified

this thesis uses a modified form of the EDF statistic. An

estimated distribution function is used whose parameters are

derived from the observed sample.

4
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JUNKNOWN PARAMETERS

In general, EDF tests are valid whenever the hypothesized

distribution is fully specified. The probability integral

transformation converts the values of a completely specified

cumulative distribution to ordered values from a uniform dis-
V.

tribution over the interval zero to one (17:184). However in

practice the distribution is seldom fully specified. Hence,

the probability integral transform, by itself, is not enough

help. David and Johnson (17) have however shown that when

location and scale are the parameters being estimated, the

cumulative distribution of EDF statistics depends on the func-

tional form of the distribution rather than the estimated

parameters. This allows the probability integral transform to

remain valid in certain cases when the distribution is not

-4 completely specified. It is this quality, coupled with in-

variant estimates of the parameters, that allows the gene-

ration of valid critical value tables dependent only on n and

the significance level (a).

THE KOLMIOGORQV-SMIRNOV STATISTIC
.%

The Kolmogorov-Smirnov statistic is defined as the abso-

lute difference between F(x) and S(x). Yet, since we are

interested in the greatest discrepancy between the distribu-

tions, our test statistic is

5
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KS = sup F(x) - S(x) (4)
x

"- In effect, this measures the superium of the absolute vertical

discrepancy between the hypothesized distribution and the

empirical distribution (15:346).

THE ANDERSON-DARLING STATISTIC

S ,,Goodness-of-fit tests based on the difference between

empirical and hypothesized distributions almost always have

smaller discrepancies in the tails of the distribution (40).

To overcome this, several things can be done. The most popu-

lar is to weight the squared differences between distribu-

tions. The A 2 statistic is an example of such an approach.

It is based on a nonnegative, weighted average of the squared

discrepancy. That is

A 2 = n 0 [S(x)-F(x)1 20CF(x)Jdx (5)

where

O[F(x)] = [(F(x))(1-F(x))] -

In computational form

6
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1 n
A2 = n - (2j-1)[ln F(x.)+ln(1-F(x )](6)

n j=1 n41-j

In effect, this accentuates the difference between F(x) and

S(x) in the tails of the distribution (40).

THE CRAMER-VON MISES STATISTIC

Another example of this approach is the Cramer-von Mises

statistic. In this case the weighting function GCF(x)3 equals

one. This defines the statistic as

2 2
W = S(x)-F(x)J dx (7)

with a computational form of

2 1 n 2W -- + XE F(x.) -((2j-1)/2n) 1 (8)
12n j=1

In effect, this equally accentuates the differences between

F(x) and 6(x) (40).

7
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PROBLEM STATEMENT

Application of a particular distribution to a problem

often is hampered in one of two ways. Either there is a lack

of knowledge about the parameters of a specific distribution

or there is not a method to easily test if a set of observa

tions are a random sample from a specific distribution. The

former problem is overcome by theoretical investigations of

the parameters and characteristics of the distribution. The

latter problem is overcome, generally, by development of a

general test statistic or a table of critical values used in

goodness-of-fit hypothesis testing for various sample sizes

and specific parameters.

Numerous investigations of the parameters of the Logistic

distribution have been accomplished. These investigations have

used various methods. For example, least squares, maximum

likelihood and best linear unbiased estimates of the parame-

* ters have all been accomplished. Based on asymptotic distri-

bution theory, Stephens has developed critical values to apply

the logistic distribution to goodness-of-fit hypothesis testing

(41). However, his test statistics are highly modified for the

asymptotic theory to hold true. No known effort has been

done, based on finite distribution theory, to easily apply the

Logistic distribution to goodness-of-fit hypothesis testing.

Because of its applicability in reliability, there is a need

to develop such a set of critical values tables for various

sample sizes when the location and scale parameters are esti-

8
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mated from the sample.

OBJECTI1VES

This thesis has the following objectives:

1. Based on finite distribution theory, generate and

.- document modified Kolmogorov-Smirnov, Anderson-Darling, and

Cramer-von Mises rejection tables for the two parameter Logis-

tic distribution where the location and scale parameters are

unknown.

2. Conduct a power comparison between the Kolmogorov-

Smirnov, Anderson-Darling and Cramer-von Mises goodness-of-fit

tests.

."
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II. THE LOGISTIC DISTRIBUTION

History and Development

Although the name might imply it, the logistic distribu-

tion does not have any special association with the fields of

supply and maintenance or the function of logistical support.

The distribution initially was used in a study of population

growth by Verhulst in 1845. In 1920, Pearl and Reed renewed

interst in the distribution with their use of it in a study of

population growth in the United States (33). In the mid-

1940's Dr. Berkson began using the distribution with respect

to studies in the biological sciences (5). He established

applications for the distribution in the study of autocataly-

sis, electro-chemical reactions and biochemistry. Reed and

Berkson used the logistic distribution in physiochemical phe-

nomena studies in 1929 (36). Bioassay applications were est-

ablished by Wilson and Worchester (43) in 1943 and by Berkson

between 1944 and 1957 (5,6,7). In 1958, Birnbaum used the

distribution in a study of mental ability (10). Recently, in

1981, Leach (29) used the logistic distribution in a study on

the original subject of population growth.

The logistic distribution was introduced to the reliabi-

lity and maintainability field when Plackett used it in a

study of life-test data (34). Shah, in 1965, showed its

applicability in psychometrics, a field of interest to the

reliability engineer (39). Bain (4) showed that, like the

gamma distribution, the hazard function of the logistic dis-

10 . .o
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tribution approaches a constant and is therefore a useful

alternative in reliability and life testing situations.

V.- Much work has also been done with respect to estimation

S-, of the parameters of the logistic distribution. Pearl and

Reed (33), Schultz (38) and Berkson (5) all obtained least

square estimates of the parameters. Maximum likelihood esti-

mation of the parameters has been done by Wilson and Worchester

(43), Berkson (7), and Harter and Moore (24). Berkson and

Hodges developed a minimax estimator (8). The minimum chi-

square technique was also used by Berkson to estimate the

parameters. Plackett (34), Kjelsberg (27) and Gupta, Qureishi

and Shah (21) have all developed best linear unbiased esti-

mates for complete and censored samples, while Plackett deve-

loped linear estimates from censored data (35). Beyer inves-

tigated the conditional estimation of the scale parameter

using selected order statistics in 1966 (9). Also using

selected order statistics, Richardson investigated simulta-

neous linear estimation of the location and scale parameters

(37).

Exact moments of the order statistics of the logistic

distribution have also been developed. Birnbaum (10), Birnbaum

S..and Dudnan (11), Plackett (34), and Gupta and Shah (22) have

all worked on the exact moments of the distribution. Shah has

tabled variances and covariances of logistic order statistics

for sample sizes up to 10 (39). Gupta, Qureishi and Shah

extended this through a sample size of 25 (21). Harter and

Moore established the asymptotic variances and covariances of

- .. .- , .- -... •



the maximum likelihood estimators in 1967 (24) and Bain (4)

presented tabled percentage points for the maximum likelihood

estimators.

The Looistic Distribution

The shape of the logistic distribution is convex and

symmetric about the mean and similar to that of the normal

distribution. The notable difference is that the tails are

relatively thick, more like that of the exponential distribu-

tion. The location parameter or mean (1) relates the point

of symmetry, the median and the mode of the logistic density

function. The standard deviation (T) measures the relative

dispersion of the distribution along the axis of the indepen-

dent variable.

The logistic distribution with mean V and standard

deviation r is defined as

4Fix)= l+exp[-..(x-P)/q]] "  
(9)

with the scale parameter defined as a/K.

The density function is expressed as

(e x pE -t( x -9 )/o*.3J
f' f(x)= -(I0---

a3 f, 1[+exp(-(x-I)/A '3J 2

12
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for -e < x <

.-.'

The location parameter IP indicates the value of x at which
p

failures are most likely to begin occuring.

The moments of the logistic distribution can be found

using

%-S

A °.

::E(xk) Go" x k Ie x p E -1(( xp -P/10.01

" " ;... [ O'J'3 [1 +exp [-1(( x-P )/aJ -21 Ildx ( 11 )

or more easily by the moment generating function (mgf)

S°.

OD
-~xl t ) exp [x t ]l(e xp [-1(( x-P )/0T'3

CC3L I +exp C -1(( x-L)/a ] 2- "dx (12)

From the reduced variant, y= (x-l1)/A, Gumbel (?M) has

shown that the mgf can be expressed as

13
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% _ m (t)= ro(+t/c)r(i- t/c) (13)

which is a Beta function were c= /4-.

° .

APPLICATION OF THE LOGISTIC DENSITY FUNCTION

If a random variable represents the lifetime or time to

failure of a unit, then the study of that variable is said to

be in the area of life-testing or reliability theory. The

probability that a unit survives until time x is called the

reliability of that unit at time x and denoted as R(x)= 1-F(x).

On the other hand, the hazard function of the unit may be

interpreted as the instantaneous failure rate of the unit

(4:42). It is often more informative to consider the hazard

function of a model than to look at the shape of the pdf or

cdf directly. A typical hazard function in the area of life

testing is a U-shaped or bathtub shaped curve (Fig 1).

24
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Typical hazard function

Figure 1

Normall,, whe, A unit is placed in service it first goes

through a per od where the frequency of failures is decrea-

sing. That is, as. manufacturing defects are overcome, the

reliability of the unit improves with age. The unit then goes

through a period where failures are more or less random at a

constant rate. As the unit begins to wear out or deteriorate

the failures become more frequent and the failure rate in-

creases.

The hazard function for- the logistic distribution is

15
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expressed as

f(x) ltF(x)
h(x) - =- - (14)

I - F(x) <r4-3

h(x) is an increasing function of x and it is easy to see that

S. h(x) approachs t/0"4j3 as x-*e. This property may be well suited

to the analysis of certain systems. For example, the hazard

function of a system may not be characterized by the normal

bath-tub curve. When placed in operation, the system may

almost immediately begin to wear out with an increasing fail-

ure rate. The failure rate may than approach a constant, and

continue thus for quite some time. In situations such as this

the logistic function can be used to advantage.

9 16
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Ill. METHODOLOGY

This thesis presents tabled critical values of the modi-

fied Kolmogorov-Smirnov, Anderson-Darling and Cramer-von Mises

goodness-of-fit tests for the logistic distribution with un-

known location and scale parameters. This chapter discusses

the procedures used in this thesis. First, an outline and

flow chart of the Monte Carlo method is presented. Next,

there is a description of the steps followed in this method.

Finally, the chapter concludes with a discussion of the power

study between these test statistics.

4'

STEPS IN THE MONTE CARLO METHOD

The following eight steps outline the Monte Carlo method

used to calculate the critical values for the modified KS,

A2  2
and W goodness-of-fit tests. The flow chart in Figure 2

illustrates this method.

1. For a fixed sample size n, random deviates from the

logistic distribution are generated using a computer subrou-

t ine.

2. Estimates of the location and scale parameters are

calculated using the method of maximum likelihood. The

MLE estimates are calculated iteratively using the Secant

method.

3. The random deviates obtained in step one are arranged

in ascending order using a computer subroutine.

17



Generate random

Determine tILE
estimates o4

location &scl

Bder ia t s,.*. Order dviae

--. Calculate
F(x) & S(x)

Cal cul at--;,;:KS, A , w"

N -5.0o0 1=

Order KS , 2 w

De termi ne
80th,85thtOth,95th,99th

percentiles

.- "i -,"samp e ,-5,10,15,20,25,30
Sampil

.OP

"C- S-T



4. The estimated parameters are used to calculate the

hypothesized distribution F(x).

5. The KS statistic is calculated using Eq (4), the

A2 statistic using Eq (6) and the W 2using Eq (8).

6. The above steps are repeated 5000 times. As a result,

%2 2

5000 independent KS, A 2and W 2statistics are generated.

7. Each group of 5000 statistics are ordered. Using

plotting positions, discussed later, the 80th, 85th, 90th,

95th, and 99th percentiles of the distribution of each statis-

tic are calculated by linear interpolation.

8. Steps 1 to 7 are repeated for samples sizes equal to

5, 10, 15, 20, 25 and 30.

Generation of random loistic deviates

There is no known available computer routine to generate

random deviates from the logistic distribution. However, th,

probablity integral transform insures that a random variable

from any distribution can be transformed to a random variable

distributed uniformly on the interval zero to one. Further,

* this transformation is independent of the location and scale

parameters of the distribution (17). Because of this, the

concept can be reversed to generate random deviates for the

logistic distribution by transforming random deviates distri

buted uniformly on the interval zero to one. That is, if RN

is a pseudo-random deviate distributed uniformly (0,1), it can

. . . . . ., . . .. .. : . . . : . . . _ : , .- . . '.--.. '. -. . . .



be set equal to the logistic cdf

R. [I+exp[ - ((x-i )/743J ] "1  (15)

and solving for x yields

x= P - fcT4(ln[(1-RN)/RN])]/( (16)

.%

However, this still leaves the problem of generating

pseudo-random deviates distributed uniformly (0,I). The ran-

dom uniform deviates for this thesis are obtained on the

Control Data Corporation (CDC) 6600 computer using the Inter-

national Mathematical and Statistics Library (IMSL) subroutine

GGUBFS (25:Ch 6).

'4 Maximum likelihood estimates of the logistic parameters

A procedure to derive the maximum likelihood estimates

(MLE) for location and scale (11 Eand T of the logistic dis-

tribution was developed by Harter and Moore (23). This proce-

dure iteratively solved the first partial derivatives of the

likelihood function after initial estimates have been chosen.
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Iterative linear interpolation was applied at each step until

the results of successive steps agree to within some assigned

tolerance. A procedure similar to this is used in this thesis.

The maximum likelihood method of estimation is one of the

most commonly used methods of parameter estimation when using

EDF statistics. Some of the reasons for this are that MLE's

are consistent and, more importantly, they are invariant

" (24:239). The method of maximum likelihood, in essence, se-

lects as estimates of the unknown parameters those values for

which the observed sample would have most likely occured

(3:83). That is, this method selects as estimates those

values that maximize the probability of the occurance of the

sample results (24:236).

The likelihood function is defined in the following way,

if X are sample observations on X, then the likeli-

hood function (L) is defined to be the joint density function

evaluated at Xx 2 ,...x. The likelihood function can be repre-

sented by

n
L=1f(x.:p ,c) (1 7)'-', i=1

0-2

The procedure to determine the MLEs P and <0r is:E E

1. Take the partial derivatives of L with respect to

each parameter.

*: 21
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2. Set these equations equal to zero and solve simultan-

eously for the values of the parameter estimates.

Quite often this procedure is easier to implement if the

natural logarithms of L are taken first. Doing this and using

Eqs (10) and (17) the likelihood function for the logistic

-C distribution can be written as

n 1(exp[-1(x -V)/q453 3
L= -T -- ( I )"".i=l OZ,3 I + e x p I 1 x .-IL )/or-§" ]

and if z= 1{(x -p)/r4i then

I n expE-z.i L= i(19)
L= -M- 1---2

<"4- i=1 (T+exp[-z.])

but since there are n! permutations of the realizations on the

random variables we have

*.-'..

" n exp[-z.]
L= n! -T2 ' (20)

3,. i=1 (1+exp[-z 1)

The natural logarithm of L is then

Ad= 22



n n
ln(L)- ln(n!')+nln(I(/r4)- E z +2 X ln(1/14expf-z,]) (21)

Taking the partial derivatives of ln(L) with respect to I'

and 0 yields

I ln(L) I *xp(-z.j
=~ n-2X..._____ (22)

0l r 4 IexpE-z i

&ln(L) 1 zoxp(-z )
_____ -2 I 1e Lp- -n (23)

These equations, when set equal to zero, can not be solved

explicitly. However, the roots of those equations can be

found using iterative methods on a computer.

The Secant Method

The Secant method for finding a root of f(x)-O Is a

slight variation of Newton's method (12t39). Therefore, a

brief discussion of Newton's method will proceed that of the

Secant-method.
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Suppose that the function f is twice continuously differ-

entiable on the interval [a,b]. Let x' be an element of the

set of real numbers bracketed by [a,b]. Then x' is an approx-

imation of the root p of the equation f(x)=O if f'(x') is

not equal to zero and if the absolute difference between x'

and p is "small". Consider the second-degree Taylor polyno-

mial for f(x) expanded about x'

f(x) = f(x')+(x-x')f'(x')+(x-x') 2]f''((x)) (24)

where P(x) lies between x and x'

Since f(p)=O if x=p Eq. (24) becomes

2
0 = f(x')+(p-x')f'(x')+[(p-x') /2]f'(P(x)) (25)

Since :p-x': is assumed to be small, (p-x')2 is smaller.

2
If (p-x') is considered negligible then the third term in

Eq (25) can be dropped. Solving for p then yields approxima-

tely

p = x'-[f(x')/f'(x')] (26)

s 2.
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However, with respect to the logistic function, we want to

determine the roots of the first derivative instead of the

likelihood function itself. That is, Eq (26) becomes

p =x'-CL'(x')/L''(x')J (27)

and this would require iteratively evaluating both the first

and second derivatives of the likelihood function. To circum-

-' vent the cumbersome calculations of the second derivative the

Secant method can be used. It is a variation of Newton's

method and derived as follows:

By definition

f'(p ) 1im f---- - f -p- -- (28)

if x=p then
a-2

f(p )-f(p)
n-2 n-1

f (p )-- (29)

n- n-2 n-I
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and Newton's formula becomes

= f (Pn-I ) (  n-I-Pn-2 (30)
3 ... f p (P~ )-f p )

n- - n-2

or in the case of the likelihood function for the logistic

distribution

( n-I nI P -
P - L(p n-I )(pP-1  n (31)

)-L'(p )
ii-

-- thus eliminating the need for second derivatives.

One requirement of both Newton's and the Secant method is

* that a good initial approximation be chosen. Otherwise the

method may diverge. In this thesis the sample mean and stan-

"' dard deviation will be used as initial approximations.

- . 9..

Ordering the Deviates

The random logistic deviates are arranged in ascending

order using the IMSL subroutine VSRTA (25:Ch V)6

26



The Hypothesized Distribution function

The location and standard deviation maximum likelihood

estimates (PE and 4) and the n ordered logistic deviates (x.)

are used to calculate the hypothesized distribution function

F(x) by

F(x.)= 1/(I+exp[-t( x i-I )/-T4) (32)
E E

2
Using the hypothesized and sample distributions the KS, A

and W statistics are calculated. This is done 5000

times, once for each of the 5000 samples of size n.

Determining the critical values of the goodness-of-fit tests

The 5000 statistics for each of the three tests, for each

sample size, are ordered before determining the critical va-

lues. Using plotting positions and linear interpolation the

80th, 85th, 90th, 95th, and 99th percentiles of the distribu-

tion of each test statistic are found. These percentiles are
A~2 W2

the critical values for the KS, A and W goodness-of-fit tests.

Given a series of ordered values, the plotting position

of each event is its cumulative probability (22:5). There-

fore, the use of plotting positions to determine critical

- .- values requiress a careful enumeration of the cumulative prob-

27



abilities on the ordinate axis. This enumeration is compli-

cated by the lack of probabilistic values for the end points

of the order statistics. For example, it can not be said

that the first order statistic occurs with probability zero.

Likewise, the probability of the last order statistic is not

one since one more realization of the random variable may

yield a higher valued statistic. Because of this, it is

necessary to consider the ordinate value of each statistic as

a function of its relative position.

Three plotting positions for each point are considered.

These are the middle of the interval between the i/nth and

(i-l)/nth points, the median ranks plotting position and the

mean position. The first plotting position can be expressed

as

(i-.5)/n (33)

--I This is the value midway through the jump from (i-l)/n to i-n

and was first proposed by Hazen in 1914 (22:1). The second

plotting position can be very closely approximated by

(i-0.3) / (n-0.4) (34)

U.
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This value is essentially the median value of the distribution

of the ith order statistic and was proposed by Johnson in 1951

(22:1). The third plotting position is the mean position and

is expressed as

i/(n+l) (35)

This value is the expected value of the cdf population at the

ith order statistic. It was proposed by Weibull in 1939

(22:1).

The KS, A 2  2
and W ordered statistics form the basis

of the abscissa axis. The associated ordered plotting posi-

tions form the basis of the ordinate axis. The last entry is

added to these ordered values making up the 5001 val,"es on the

* abscissa and ordinate axes. The 5000 ordered KS (A or W 2

statistics form the 1st to 5000th positions on the abscissa

axis. The last position is calculated by linearly extrapo-

lating from the 4999th and 5000th entries. The calculation of

. the 5001st entry is not subject to a maximum value. The 5000

ordered plotting positions form the Ist to 5000th positions on

the ordinate axis. The interval is completed by entering a

one in the 5001st position. The addition of these Nextra"

- values on each axis allows an easier determination of the ith

and (i-1)th points.

The critical values are calculated by linear interpola-

tion between the ordered statistics and the corresponding

9 29



plotting positions. For example, the plotting position just

larger and just smaller than .90 are determined. These become

the ith and (i-1)th points. The ratio of the difference

between the desired percentage point and the (i-1)st point is

then calculated. This ratio is then applied to the difference

between the ith and (i-1)th test statistics to yield the

desired percentile. Figure 3 shows this procedure graphical-

ly. At 5000 repeitions there is no difference in the third

significant digit in calculating the KS, A2 or statistics

for the three plotting positions. For simplicity, the plot-

ting position described by Eq (33) is used.

30
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Power compar i son

-- In this thesis a comparison of the power of the modified
2. 2

"KS, Aand W tests is made. The power of each test is coam-

pared for several different distributions. The hypothesis

being tested is

H0: the sample values follow a logistic distribution.

HA: the sample values do not follow a logistic distribution.

Using IMSL subroutines on the CDC 6600, random deviates from

different distributions of sample size n are generated. The
p A2 W2

test statistics KS, and W are calculated under the null hy-

pothesis. These test statistics are then compared to the

respective critical values developed in this thesis. This

procedure is repeated 1000 times for each sample size. The

number of times the test statistic exceeds the critical value

is counted. Exceeding the critical value results in a rejec-

tion of H . The power of the test for a given sample size
0

is the number of rejections divided by the total number of

tests, 1000.

The different distributions considered in this power

study are:

1. Uniform

2. Exponential

3. Weibull(shape=3)

4. Gamma (shape=3)

9 32
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5. Gamma (shape=6)

6. Gamma (shape=9)

7. Gamma (shape=15)

8. Gamma (shape=30)

9. Normal

10. Logistic

The gz.-dna distribution is often used in reliability and

maintainability theory. Its density function is expressed as

-K-1

x K-lexp[-x]
4 (x)= -(36)

r(K)

where K - shape parameter

A graph of the gamma distribution for various values of K is

shown in Figures 4a and 4b.

r 3

i 33



.6.

"--3

.5

.4

.2- =

Gammfwa distribution: K=3,6,9

Figure 4a

34



.10.

.09.

.08-

.07-

.06-

. 05-

.04

.03

.02

.01

15 25 35 45

Gammwa distribution: K=15,30

Figure 4b

35



- . .

The Weibull distribution is also often used in conjunc-

tion with reliability and maintainability studies. Its density

function is expressed as

f(x)= KxK 1 exp[-x K (37)

where K holds the same notation as in Eq (27). A graph of

the Weibull distribution is shown in Figure 5.

As can be seen, the gamma and weibull distributions are

generally symmetrically convex for the correct parameter values.

The normal and exponential distributions are well known and need

not be discussed here.

Computer proQrams

Computer programs used in this thesis are presented in

Appendix E.
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IV. USE OF TABLES

This chapter discusses the use of the tabled critical

values of the two parameter Logistic distribution for the

modfid K, 2  2
modified KS, A2 and W statistics generated in this thesis.

An example follows, with an explanation of the basic procedure

to utilize the table.

For all three goodness-of-fit tests, a theoretical dis-

• tribution F(x) is compared to an empirical, observed distribu-

2 2
tion S(x). The KS, A , or W statistic is calculated using the

appropriate equation (Eq (4), Eq (6) or Eq (8)). If the value

of the statistic exceeds the tabled critical value, the theore-

tical distribution is rejected. The steps in applying this

procedure are:

1. Determine the sample size n and the level of signi-

ficance. The significance level is the probability of rejec-

ting the null hypothesis that the sample is from the Logistic

distribution when the null hypothesis is true.

2. Select, in a random manner, the n observations from

the population to be tested and order them from smallest to

largest.

3. Estimate the unknown location and scale parameters

from the observed sample using the method of maximum likeli-

hood.

4. Completely specify the hypothesized distribution F(x)

38
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using the estimated location and scale parameters. Determine

the values of the empirical distribution just prior to and

after each of the 1/n jumps.

A2  W 2

5. Determine the value of the KS, A or test statistics

by using Eq (4), Eq (6) and Eq (8).

6. Find the intersection of the significance column and

the sample size row in the table of values. This is the

critical value to be compared to the test statistic.

7. Reject the null hypothesis if the value of the test

statistic exceeds the critical value. If the test statistic

does not exceed the critical value, we fail to reject the null

hypothesis and conclude there is insufficient evidence to say

the observed sample does not follow the logistic distribution.

EXAM"PLE

The following example illustrates this procedure for the

modified Kolmogorov-Smirnov test. For a sample size of five

the following numbers are obtained: 104.9829, 81.1517,

87.2204, 113.5512, and 61.5415. For this sample, The maximum

likelihood estimate subroutine used in this thesis yields

location and standard deviation parameter estimates of: P =

90.0986 and O = 20.1107. The scale parameter is calculated
E

using 4t7i/lt, yielding a value of 11.0876. Using these

values the hypothesized distribution is calculated for each

sample value using Eq (9). The significance level is .05.

The hypothesis tested is:

39

--- * - . - *.' , . - . ,- . . - - -',. : -:



HO: sample data is from a Logistic distribution

HA: sample data is not from a Logistic distribution

The calculations for this test are shown in Table I.

Table I

Example Calculations

x F(x) S(x ) S(x ) KS

64.5415 .071 0 .2 .129

81.1517 .309 .2 .4 .109

87.2204 .436 .4 .6 .164

104.9829 .793 .6 .8 .193

113.5512 .892 .8 1 .0 .108

w e)us I

where S(x ) is just prior to the jump in the empirical distribution

,,, S(x ) is just after the jump in, the empirical distribution

Using Eq (4), the KS statistic equals .193. The critical

value from Table V with a signi+icance level of .05 and n - 5

40
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is .309. Since .193 is less than .309, we fail to reject

the null hypothesis that the sample comes from a Logistic

distribution.

*1.

.1~

- °
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V. DISCUSSION OF RESULTS

This chapter discusses the results obtained in this the-

sis as they pertain to the objectives set forth in Chapter I.

PRESENTATION OF THE TABLE OF CRITICAL VALUES

The tabled critical values (for sample sizes of 5, 10,
15, 20, 25, and 30) for the modified KS, A2  2

and W goodness-

of-fit tests are presented in Appendancies A, B and C respec-

tively. Each table is valid for the Logistic distribution

when the location and scale parameters are estimated from the

sample using the method of maximum likelihood presented in

this thesis.

However, the Secant method used in this thesis has cer-

tain properties that require explaination. As stated earlier,

the Secant method converges only when the initial estimates of

the parameters are "goodf. In this thesis the sample mean and

standard deviation are used as initial estimates of the

unknown parameters. In all but four of the 30,000 samples

used in this thesis, the sample mean and standard deviation

allowed convergence using the Secant method. The four cases

.' of non-convergence occured when the sample was very tightly

grouped, thus yielding a very small sample standard deviation.

* This occured two times in a sample size of five and once each
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in the sample sizes of 10 and 15. Discarding these non-converg-

ent samples and obtaining a new sample theoretically biases

the resulting calculations. However, it was felt that such a

small number of samples could be discarded without meaningfully

biasing the numerical results of this thesis.

This conclusion is reached for the following reason.

Discarding samples, within a single sample size, changes the

relative positions of some of the KS, A2 and statistics cal-

culated for that sample size. That is, if five samples are

taken and five KS statistics obtained, they will have a speci-

fic ascending order. However, if the third sample is discard-

ed and a "new" sample and KS statistic obtained, the order of

some of the five KS statistics might be changed. The "new" KS

statistic may not fit in the third ordered position.

The most severe case of discarding samples in this thesis

is two out of 5,000. This occured with a sample size of

five. This effectively means that any calculated statistic

would be, at most, two "positions" out of order. The statis-

tics calculated in this thesis, when ordered, generaly

increment in the the fourth digit. Additionaly, a statistical

value two positions out of order would cause an error of

±.04%. That is, for 5000 repetitions, if a statistical value

4is two positions out of order, then a critical value based

on this ordering is at most ±.04% in error. For sample

sizes of 10 and 15, the critical values reported would be in

error by at most ±.02Y. It seems unlikely that any change

in the three significant digits reported occured due to the
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policy chosen.

However, this property of non-convergence in some cases

represents a constraint on using the Secant method when finding

the maximum likelihood estimates of the unknown parameters.

It is not unreasonable to expect some cases of live data to

truely have a small standard deviation. The program used for

this thesis to estimate the unknown parameters of the Logistic

distribution may therefore be inappropriate in some cases. A

gradient search method, such as that presented by Wingo

(44:91), may overcome this problem.

ANALYSIS OF CRITICAL VALUE TABLES

Analysis of the tabled critical values generated by this

thesis and the distributions of the KS, A 2 and W 2 statistics

reveal the following results.

In the case of the KS tabled critical values, analysis

relative to the significance levels and sample size reveal

that a concave pattern is relatively constant. The change in

significance level simply shifts this curve upward (Fig 6).
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'For the A2 tabled crtical values, a similar analysis shows

that the first three significance levels have a smooth, slightly

- - increasirng, rnr-tonic trend. The last two significance levels

show an increairg trend, but the transition between sample

sizes is not _ smooth or as constant (Fig 7).
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Figure 7: critical values by samples size
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%, Results of the analysis of the W 2 tabled critical values are-are

2
very similar to those of the A statistic. However, instead

of a smooth, slightly increasing, trend for the first three

significance levels there appears to be a generally constant

horizontal trend (Fig 8). At the .05 significance level the

change between sample sizes becomes more erratic and possibly

S- increasing. At the .01 significance level the change between

samples is generally increasing with an upward jump between

sample sizes of 10 and 15.
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A roa I s i +~. t he distributionis of the KS, A2an

W st at i tic dt.ve Ioped i r, th is thesi s reveal the following

re -ult. For -il sample sizes, the distribution of all three

EtatstZ'pprc..'Imately follow-= a bompertz curve (Fig 9).

For each c-tatisti:-, this curve is slightly modified by sample

Pro~abiht

st~atistic

uwr-r. 1 41 istfr ibu t io, shape of test stat ist ics

Figure 9
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VALIDATION OF COMPUTER PROGRAM

The computer program used to generate the critical values

obtained in this thesis is validated by comparing the criti-

cal values obtained in this thesis to those obtained by M.A.

Stephens and by hand calculations. The hand calculations

validate that the computer program generates numbers correct-

ly, while the comparison to Stephens values validates that

the values of this thesis are acceptable. In 1979 Stephens

A 2  2calculated modified KS, and W statistics for the Logistic

distribution based on asymptotic distribution theory. This

* ,A2 2
thesis calculated KS, A and W statistics based on finite

distribution theory. If the two sets of statistics are compar-

able this implies the computer program generates valid results.

• - This comparison was done in the following manner. The

critical values obtained in this thesis are modified according

to the appropriate formula presented in Stephens paper

(14:14,16). The result is then compared to the tabled values

presented by Stephens. For example, with a sample size of 20

2and an alpha level of .05, the A statistic obtained in

this thesis is .655. This value was then modified by equa-

tion 38.

2
A (1.0+(0.25/n)) (38)

The result (.663) is then compared to 0.660, the value presented
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by Stephens. Such comparisons for all values obtained in this

thesis are generally good. Tables II, III and IV show these

compar isons.

Table II

Kolmogorov-Smirnov (KS) Comparison

KSTn Stephens
1-c n n

5 10 20 5 10 20

.90 .633 .677 .698 .643 .679 .698

.95 .691 .727 .760 .679 .730 .755

.99 .754 .813 .836 .751 .823 .854
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Table III

Anderson-Darling (A)2 Compar ison

A 2(1+.25/n) Stephens
l-cxn Critical

5 10 20 values

.90 .570 .562 .564 .563

.95 .651 .656 .663 .660

.99 .891 .874 .887 .906

Table IV

Cramer-Von Mises () Comparison

(nW -_0.08)/(n-1 ) Stephens
1-a n Critical

5 10 20 values

.90 .081 .081 .081 .081

.95 .099 .097 .096 .098

.99 .135 .129 .133 .136
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ow.

An assumption requiring validation is with respect to the

MLE estimates generated. Maximum likelihood theory specifies that

MLE estimates are invariant. The invariant property is critical

with respect to this thesis since the validity of the tabled

critical values depends on it. This assumption is examined with

the LE estimates of a logistic(1,4) and a logistic(4,16). In

order to be invariant the MLE estimates of the logistic(1,4)

should be equal to the MLE estimates of the logistic(4,16) after

-. multiplication by a factor of four. These estimates were ob-

tained on separate computer runs for sample sizes of 5, 15 and

25. Hand calculations show that when multiplied by a factor of

four the logistic(1,4) MLEs differed from those of the logis-

tic(4,16) by generally 0.000001. This small difference is attri-

buted to computer round-off.

SENSITIVITY ANALYSIS OF PROGRAM

A condition required by the Secant method is that for conve-

rgence the initial estimates must be "good". Since in a few

cases the Secant method used in this thesis did not converge, an

examination of what "good" means is conducted. This is done by

-p systematicly changing the population standard deviation used to

generate the logistic deviates, and generating 2000 samples for

each sample size. Each time the Secant method used in this

thesis does not converge, the sample mean and standard deviation
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are printed out. By comparing results it becomes apparent that

:LN when the sample is tightly grouped about the population mean, the

sample standard deviation becomes very small. When the sample

standard deviation is generally less than 25-30% of the popula-

tion standard deviation, the method fails to converge.

PRESENTATION OF THE POWER STUDY

A comparison of the relative power of the modified Kolmo-

gorov-Smirnov, Anderson-Darl ing and Cramer-Von Mises goodness-

of-fit tests developed in this thesis is made. For distribu-

tions with non-symmetrical convex patterns the power of the

2 2KS, A and W tests is very good. For distributions with

symmetric convex patterns, the power is much lower. The

distributions used in this power study are listed in Chapter

III. For each of these distributions 1000 samples, for each

2 2
sample size, are obtained. For each sample a KS, A , and W

.-statistic is calculated using Eq (4), Eq (6) or Eq (8). Each

statistic is compared tc. the appropriate tabled critical value

in table V, VI or VII. This comparison is done at the 0.05

significance level. For each sample size, the number of times

the calculated statistic exceeds the tabled critical value, an

index variable is incremented by one. This index variable is

then divided by 1000 to yield the percent of time the null

hypothesis (that the sample came from a logistic distribution)

*" is rejected.

"- When the sample comes from a uniform or an exponential
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distribution the power of the modified KS, 2 and W tests

is very good (Tables IIX through XIII). The shape of the pdf

of these distributions is decidedly not symmetrically convex.

This undoubtedly is the reason the tests presented in this

thesis are so powerful when testing samples from these distri-

but ions.

However, when the sample comes from a distribution with a

symmetric convex pattern the power of the tests presented in

this thesis is much lower. This is due primarily to the diffi-

culty of distinguishing between similar, yet different, symme-

trical convex patterns. The distributions tested in this cate-

gory are the Normal, Weibull, and various Gamma distributions.

In the case of the Weibull and Normal distributions, as well

as the Gamma with higher shape parameter values, the power of
A2 W2

the modified KS, A and W tests is little more than the

significance level. Only when the symmetric convex pattern of

the Gamma distribution becomes skewed does the power of these

". tests begin to noticeably exceed the significance level.

The modified tests presented in this thesis generally

reject the null hypothesis of a logistic distribution when the

sample comes from a Gamma distribution. Yet, they have only

moderate power for lower shape parameter values, when the

symmetric convex pattern is skewed. For higher shape parameter

values thier rejection power is only slightly above the signi-

ficance level. This shows how difficult it is for these tests

to distinquish between other symmetric convex patterns and the

symmetric convex pattern of the logistic distribution.
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The Normal distribution is symmetrically convex and very

close in shape to that of the Logistic distribution. All

three modified tests have considerably more difficulty rejec-

ting the null hypothesis in this case. Each test, generally,

: reports a different power for each sample size. The power is

simetimes slightly above the significance level and at other

times slightly below it. There does not appear to be any

consistent pattern in rejecting the null hypothesis.

When applied to the Logistic distribution, all tests

generally failed to reject the null hypothesis that the sample

came from a logistic distribution. Yet, in this case, the

rejection percentage is not always equal to the significance

level as might be expected. This variability is primarily a

function of the Monte Carlo method and the 1000 repetitions

upon which the study is based. For example, the expected

number of times the power of these tests should be between .04

and .06 based on 1000 repetitions is approximately three. In

actuality, this occured four times. In most cases, the rejec-

tion percentage, when the sample comes from the Logistic

distribution, is between .048 and .052.

In summary, all three tests are better at rejecting the

null hypothesis of a logistic distribution when the sample

distribution is not from a Normal distribution, than when it

is from a Normal distribution. When the sample distribution

is not a Normal distribution, the W2 test is slightly

better than the A or KS tests. When the sample is from

2
a Normal distribution the W test is generally better than
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2
the KS test and A tests. Yet, rejecting the null hypo-

thesis of a logistic distribution when the sample has a symme-

. tric convex pattern is generally not possible. All percen-

* - tages used in these comparisons are presented in Appendix D.
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VI. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Based on results obtained in this thesis, the following

conclusions are noted:

1. The Kolmogorov-Smirnov, Anderson-Darling and Cram,?r-

von Mises critical values for the two parameter logistic

distribution are valid.

2. The power comparison study based on the ten different

distributions listed in Chapter III shows that for non-symme-

trical convex distributions all three tests exceed the claimed

level of significance. For skewed symmetrical convex distri-

butions all three tests approximate or exceed the level of

significance claimed. For symmetric convex distributions all

three tests very closely approximate the claimed level of

significance. This indicates a goodness-of-fit test for a

sample from a symmetrical convex distribution is not practi-

cal. The W 2 test is generally more powerful than the

2A or KS tests.

Recommendations

The following recommendations are suggested for further

investigation:

1. Determine if another method for determining initial

57



estimates significantly affects the critical values and power

.presented in this thesis.

2. Reduce the variability in the significance level when

the null hypothesis of a logistic distribution is true by

employing a method other than the Monte Carlo method, or

increase the number of repetitions used in the power study.

3. Employ some other method to determine the critical

values for the logistic distribution.

4. Using Stephens values and formuli perform a power

study and compare those results to the results of this thesis

to determine which method is more powerful.

5. Develop a test to distinquish between symmetrical

convex distributions.
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TABLE V

CRITICAL VALUES OF THE KOLf4OGOROV-SMImR4OV
STATISTIC FOR THE LOGISTIC DISTRIBUTION

WITH UINKNOWN1 LOCATION AND SCALE PARAMITERS

Sample Level of Significance
oize

n .20 .15 .10 .05 .01

5 .262 .272 .283 .309 .337

10 .195 .203 .214 .230 .257

15 .163 .169 .178 .191 .220

20 .143 .148 .156 .170 .187

25 .128 .136 .141 .158 .175

30 .119 .124 .131 .141 .160
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TABLE VI

CRITICAL VALUES OF THE ANDERSON-DARLING
STATISTIC FOR THE LOGISTIC DISTRIWJ1TION

WITH UNKNdOWN LOCATION AD SCALE PARAMETERS

Sample Level of Significance
*i iS

n .20 .15 .10 .05 .01

5 .443 .484 .543 .620 .94V

10 .456 .4V4 .54V .640 .853

15 .461 .4"8 .554 "65 .902

20 .456 .499 .557 .655 .876

25 .453 .493 .555 .663 ogle

30 .456 .502 .552 .4P S=5
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TABLE VII

CRITICAL VALUES OF THE CRAMER-VON MISES
STATISTIC FOR THE LOGISTIC DISTRIBUTION

WITH UNKNOWN LOCATION AND SCALE PARAMETERS

Sample Level of Significance
size

n .20 .15 .10 .05 .01

5 .066 .072 .081 .096 .124

10 .065 .072 .081 .095 .124

15 .065 .072 .082 .098 .130

20 .064 .072 .082 .097 .131

25 .065 .072 .081 .098 .135

30 .065 .072 .082 .098 .132

"I-

I

U"

°•6.

% .- . -- . . . . . . . -



Appondi x D

70



TABLE I IX

COMIPARI SON OF KOLMOGOROV-Sl11RNOV, ANDERSON-DARLING
AND CRAMER-VON MISES STATISTICS FOR

SAMPLE SIZE OF 5, AND SIGNIFICANCE LEVEL OF .05

PERCENT OF TIME NULL HYPOTHESIS REJECTED

KS A w

Uniform .208 .119 .168

Exponontial .257 .119 .178

WeibulI(3) .023 .027 .039

Ganvna(3) .069 .109 .069

Ganuna(6) .050 .079 .059

Gamma(9) .040 .069 .069

Gammua (15) .099 .079 .089

Ganuia(30) .059 .069 .059

Normal .059 .050 .059

Logistic .05 1 .049 .049

71



* .- . . - .. .- - . --.-. .-. -. .. -7/

TABLE IX

* -COMPARI SON OF KOLMGOROV-SMINOV ADERSON-DARLING
AN#D CRAMER-VON MISES STATISTICS FOR

* - SAM-PLE SIZE OF 10, AN4D SIGNIFICANCE LEVEL OF .05

PERCENT OF TIME NULL HYPOTHESIS REJECTED

KS A

Uniform .287 .198 .267

Exponontial .535 .495 .564

W~ibull(3) .046 .049 .057

Gazmha(3) .089 .129 .109

Gaawva(d) .050 .059 .040

Gammia(9) .079 .069 .069

**Gammna(15) .050 .050 .079

Ganwba(30) .047 .050 .053

**Normal .040 .059 .089

Logistic .049 .052 .061
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TABLE X

COMPARISON OF KOLMOGOROV-SMIRNOV, ANDERSON-DARLING
AND CRAMER-VON MISES STATISTICS

FOR SAMPLE SIZE OF 15, AND SIGNIFICANCE LEVEL OF .05

PERCENT OF TIME NULL HYPOTHESIS REJECTED

KS A2  W2

Unifor .317 .277 .337

Exponenx .633 .703 .782

Weibul(3) .049 .051 .059

Ganmma(3) .129 .218 .158

Gamma(6) .119 .129 .139

Ganmma(9) .079 .089 .089

Guam (15) .079 .069 .069

Ganma (30) .049 .040 .049

Normal .050 .020 .030

Logistic .050 .052 .061
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TABLE XI

COMPARI SON OF KOLtIOGOROV-SM-IRNOV, ANDERSON-DARLING
AND CRAMER-VON MISES STATISTICS

FOR SAMPLE SIZE OF 20, AND SIGNIFICANCE LEVEL OF .05

PERCENT OF TIME NULL HYPOTHESIS REJECTED

KS A 2  2

Uniform .465 .528 .528

Exponential .812 .851 .881

*Weibul](3) .058 .05V .059

Ganvna(3) .099 .178 .149

*-Gammia(6) .099 .129 .149

Gaznma(9) .069 .129 .109

Ganwna(15) .059 .089 .089

Ganvma(30) .06V .069 .069

Normal .118 .069 .109

Logistic .0-41 .048 .050
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TABLE X11

COMPARI SON OF KOLMOGOROV-SMI IN4GJ, 4DERSON-DARLING3
ANJD CRAMER-VON MISES STATISTICS

FOR SAMPLE SIZE OF 25, AND SIGNIFICANCE LEVEL OF .05

Uniform .545 .584 .3

Exponential .832 .891 .9

Wtibul](3) .058 .049 .078

Gammia(3) .099 .209 .139

Ganwna(6) .129 .139 .129

Ganwna(p) .109 .129 .129

Gaaiua(15) .089 .139 .109

Gawna(3O) .089 .069 .089

Normal .040 .020 .040

Logistic .050 .039 .039
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TABLE X1I1

COMPARI SON OF KOLIIOGOROV-St1IRI~ov, ANDERSON-DARLING
AND CRAMER-VON MISES STATISTICS

FOR SAMPLE SIZE OF 30p AND SIGNIFICANCE LEVEL OF .05

PERCENT OF TIME NULL HYPOTHESIS REJECTED

*KS A w

Uniform .604 .673 .624

Exponential .931 .980 .980

Weibull(3) .068 .066 .079

Gammia(3) .218 .386 .317

Gamma(d) .109 .248 .199

Ganva9g .0?9 .119 .109

Gaamma(5 .069 .109 .089

Ganima(30) .119 .07? .107

*Normal .040 .050 .059

4Logistic .050 .050 .051
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PROGRAM VALUES

-*
* DEFINITION OF VARIABLES IN MAIN PROGRAM

* PURPOSE: GENERATE A SAMPLE FROM THE LOGISTIC DISTRIBUTION,
* OBTAIN THE MLE ESTIMATES OF THE LOCATION AND SCALE,
* DETERMINE THE HYPOTHETICAL AND EMPIRICAL DISTRIBUTION
* OF THE SAMPLE, AND CALCULATE THE KOLMOGOROV-SMIRNOV,
* ANDERSON-DARLING & CRAMER-VON MISES STATISTICS FOR THE
* SAMPLE. REPEATE THIS OPERATION 5000 TIMES FOR EACH SAMP
* SIZE OF 5,10,15,20,25, & 30

* MM= SAMPLE MEAN
* SS= SAMPLE STANDARD DEVIATION
* M2= ITERATIVE EST OF MEAN RETURNED BY MLE
* SD2= ITERATIVE EST OF STANDARD DEVIATION RETURNED BY MLE
* N # IN SAMPLE
* X(J)= ARRAY OF LOGISTIC DEVIATES
* Z(J)= ARRAY OF STANDARDIZED DEVIATES
* PIE= ARITHMATIC VALUE
* CONST= ARITI-fMATIC VALUE
* SEED= INITIAL VALUE FOR RANDOM NUMBER GENERATOR
* GGUBFS= PSUEDORANDOM NUMBER GENERATOR (IMSL)
* VSRTA= SORT ROUTINE (IMSL)" FX= HYPOTHETICAL SAMPLE DISTRIBUTION
* SX= EMPIRCIAL SAMPLE DISTRIBUTION

**** * ****** ****** ** ****** **** ******* ********** ******

REAL KS,A2,W2,AA,WW,BB,SSQ,X(30),Z(30),FX(30),SX(30)
REAL XXKS(5001),XXA2(5001),XXW2(5001),YY(5001)
REAL M2,SD2,MM,SS,SUMI,SUM2,PIE,CONST,DIFF(30)
INTEGER N,IER,LOOP,REP
DOUBLE PRECISION SEED

-" .EXTERNAL GGUBFS, VSRTA
-. COMMON N,CONST,PIE,LOOP

-,. *************** INITIALIZATION ********************

OPEN(3,FILE='VALOUT',STATUS='NEW',FORM='UNFORMATTED')
WRITE(3,101)

: • 101 FORMAT(2X,' CRITICAL VALUES FOR LOGISTIC(100,625) FOR JOHN5 "

SEED=453689621 .DO
CONST=3.**0.5
PIE=3.14159265358
N=0

9995 NIN+5
IF(N.GT.30)GOTO 9999
WRITE(3,511)N

511 FORMAT(////2X,' SAMPLE SIZE= ',15)
DO 5 I=I,N

X(I)=0.
5 CONTINUE
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************START MAJOR DO LOOP OF 5000 REPS ****

REP-5000
DO 4 I=l,REP

XX(KS( I )0.
XXA2(1I)0O.
XXW2(1I)0O.

4 CONTINUE

DO 10 LOOP-1,REP

***********START MINOR DO LOOPS BASED ON N******

************CALCULATE LOGISTIC DEVIATES

RNO-0.
AA=0O.
COUNT=O

2000 DO 20 J=1 ,N
RN4=GGUBFS (SEED)
AA=LOGU1 .-RN)/RN)
X(J)=z100.0-(((25.0*CONST)*AA)/PIE)

20 CONTINUE

**********INITIAL ESTIMATES USING SAMPLE MEAN & STD DEV

SUM 1=0.
A SuM2=o0.

DO 30 J=1,N
SLRII=SUI+X( J)

30 CONTINUE

MM=O.
MM=-SUM 1/N

DO 40 J=1,N
BB=(X( J) -tt)**2.
SLRI2=51112+ BB

*40 CONTINUE

SSQ=0.
SS=0.
SSQ=SUM2/(N-1)
SS=-SSO**0 .5

*************CALL MLE SUBROUTINE

CALL MLE(X,It1,SS,M2,SD2,IER)
509 FORMAT(/2X,' REP= ',15)

IF( IER.EQ. 1)THEN
COUNThCOUNT+ 1
WRITE( 3,509) LOOP
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WRITE(3,520)
520 FORt-AT(2X,' MLE COULD NOT CONVERGE, TRYING NEW SAMPLE '

GOTO 2000
ENDIF

COUNT 1=0
IF( IER.EQ.3)THEN

COtkJTI=COUNT1 +1
WRITE(3, 509) LOOP
WRITE(3,522)

522 FORtIAT(2X,' MLE EST OF S.D. LE 0.10
GOTO 2000

* ENDIF

CALCULATE F(X) AND S(X)

CALL VSRTA(X,N)

DO 88 K1I,N
FX(K)=0.
Z(K)=0.

88 CONTINUE

DO 50 J=1,N
Z(J)=(PIE*(X(J)-M2) )/(SD2*CONST)
FX(J)=(1 ./(1 .+EXP(-Z(J))))

- .50 CONTINUE

************CALCULATE KS, A(SQ) & W(SQ)

CALL STATS(DIFF,FX,A2,W2,KS)
XXKS( LOOP)=KS
XXA2( LOOP)=A2
XXW2( LOOP)=W2

****************END OF MAJOR LOOP

10 CONTINUE

CAL*RA(XSRP

CALL VSRTA(XXKS ,REP)
CALL VSRTA(XXA2 ,REP)

YY(REP+1)=1 .0
DO 90 K=1,REP

* YY(K)=(K- .5)/REP
90 CONTINUE

CALL ENDPT(REP,XXKS,YY,POINT)
XXKS(REP+1 )POINT

CALL ENDPT(REP,XXA2,YY,POINT)
XXA2(REP+1 )=POINT

CALL ENDPT(REP,XXW2,YY,POINT)
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XXW2(REP+1 )=POINT

CAL*(EPXKgY

CALL CV(REP,XXKS,YY)
CALL CV(REP,XXA2,YY)

GOTO 9995
9999 ENDFILE(3)

CLOSE(3)
END
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• ~***************************************************** * ******

,,**************** ********* ** ****** **** ********** ** ** *

* DEFINITION OF VARIABLES IN SUBROUTINE MLE

* PURPOSE: TO FIND A SOLUTION TO L'(X)=O GIVEN INITIAL
* APPROXIMATIONS M2 & SD2

S* MM SAMPLE MEAN
* SS= SAMPLE STD DEV
* M1= OLD ITERATIVE EST MEAN
* M2= NEW ITERATIVE EST MEAN
* M3= CANDIDATE EST MEAN
. SDI= OLD ITERATIVE EST STD DEV
• SD2= NEW ITERATIVE EST STD DEV
* SD3= CANDIDATE EST STD DEV
* PIE= ARITHIMATIC VALUE
* CONST= ARITHMATIC VALUE
* X(N)= ARRAY OF DEVIATES
* TOL= TOLERANCE FOR 5 SIGNIFICANT DIGITS
* Q(1)= L'(M1) SD2 KNOWN
* (2)= L'(M2) SD2 KNOWN
* Q(3)= L'(SDI) M2 KNOWN
* Q(4)= L'(SD2) M2 KNOWN
* AEI&2= ABSOLUTE ERRORS
* N= SAMPLE SIZE
• IER=- CONVERGENCE ERROR

SUBROUTINE ML5(X,MM,SS,M2,SD2,IER)
REAL MM,SS,M1,M2,M3,SDI,SD2,SD3,PIE,X(N),TOL,CONST
REAL CC,DD,EE,GG,HH,Q(4),SUM(6),AEI,AE2
INTEGER N,IER
COMMON N,CONST,PIE,LOOP

********** INITIAL VALUES~*
* TOL=0.000005

• MI=O .

- * M2-MM
M3=O.
SD3=-O.I SD2-SS
SDI=SD2+O .5

********** START SECANT MTHD

DO 5 K=I,50

SUM(I)=0.
SUM(2)=O.
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DD=0.
EE=0 .

'fi DO 10 1,1N
DD=( (X( 1)-Mi )*PIE)/(SD2*CONST)
EE=U(X(lI)-M2)*PIE)/(5D2*CONST)
SUM1(1I)=SUt1( I)+(EXP( -DD)/( I+EXP( -DD>)))

*SUMl(2)=SUJM(2)+(EXP(-EE)/(+EXP(-EEm)
to CONTINUE

************* ST DERIVATIVE VALUES FOR MEAN

CC=0.
CC=PI E/( SD2*CON4ST)

0(1 )=0.
Q(2)=0.
0(1)=CC*(N-(2.0*SUM( I)))
Q(2)=CC*(N-(2.0*U-(2)))

M3=M2-(Q(2)*((M2-M1)/(Q(2)-Q(1f))
AE1-ABS(M3-M2)

M1=M2
M2=M3

SLR-(3)=0.
SUM1(4)=0.
SUM(5)=0.
SUM"6)=0.
GG=0.
HH=0O.

DO 20 J=1,N
GG=-((X( J)-M2) *PIE)/(SD1 *CONST)
HH-( (X(J)-M2)*PIE)/(SD2*CONST)
SUM( 3)=SUl( 3) +Gt
SUI( 4)=SUM( 4) +-HH
SUV(5)=SUM(5)+((GG*EXP(-GG)/.+EXP-GG)))
SUM(6)=SLR'(6).(HH*EXP(-HH))/(1.+EXP(-HH)

20 CONTINUE

************ ST DERIVATIVE VALUES FOR STD DEY

Q(3)=0.
* Q(4)=0.

Q(4)=(1./SD2)*(SUI-V4)-(2.0*SLJW6))-N)

SD3=SD2-(Q(4)*( (SD2-SD1 )/(Q(4)-Q(3))))
AE2=ABS( 5D3-5D2)

IF(SD3.LE.0.1 )THEN
IER=3
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GOTO 1200
ENDIF

fiSD I SD2
SD 2=SD 3

IF(AE1 .LT.TOL.AND.AE2.LT.TOL)GOTO 1000
5 CONTINUE

IF( K.GE .50 .AND.AEI .GT .TOL .OR .AE2 .GT .TOL)THEN
IER=1
GOTO 1200

ENDIF
1000 IERO0

1200 RETURN

END
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******* *** *** *** *********** ******** * ***** ******* *** ** ****

* * * ** ** * ** * * ** -*( * ** * ** * * * * * * * * -*, * * * ** * -* * ** ** * *, ** * *** * * *, * * ** * * * -

* DEFINITION OF VARIABLES IN SUBROUTINE STATS

* PURPOSE: TO CALCULATE KOLMOGOROV-SMIRNOV, ANDERSON-
* DARLING, & CRAMER-VON MISES STATISTICS FOR A GIVEN SAMPLE

* N= # IN SAMPLE
* FX= HYPOTHETICAL DISB OF SAMPLE
* SX= EMPIRICAL DISB OF SAMPLE
* KS= KOLMOGOROV-SMIRNOV STATISTIC
* A2= ANDERSON-DARLING STATISTIC
* W2= CRAMER-VON MISES STATISTIC

SUBROUTINE STATS(DIFF,FX,A2,W2,KS)
REAL A2,KS,W2,FX(N),DIFF(N),ONE,TWO
INTEGER N
COMMON N,CONST,PIE,LOOP

********** CALCULATE KS STATISTIC

DO 2 I=I,N
DIFF( I )=0.

2 CONTINUE

DO 10 1=1,N
ONE=0.
TWO=0.
Q= I* 1
QQ=(Q- I)/N
QQQ=Q/N
ONE=ABS(FX( I )-QQ)
TWO=ABS(FX( I )-QQQ)
IF(ONE.GT .TWO)THEN

DIFF( I )=ONE
ELSE

DIFF(I)=TIAO
ENDIF

10 CONTINUE

KS=0.
DO 20 I=I ,N

IF(DIFF(l).GT.KS)KS=DIFF(I)
20 CONTINUE

,*

********** CALCULATE A(SQ) STATISTIC

SUM=O,

DO 30 =I,N
SUMSUPI+((2 .*I)-l .)*((LOG(FX(1)))+(LOG(I .--FX(NA+1-I)))

30 CONTINUE
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2--0

A2=C -N) -(Sill/N)

********CALCULSTE W(SQ) STATISTIC

DO 40 11I,N
SUM=-SIJI+(FX(I) -( (2. *1)-i. )/(2. *N) )**2.

40 CONTINUE

W2=0O.
W2=(l ./(12.*N))+SUR1

RETURN
END
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* SUBROUTINE ENDPT: PURPOSE; TO DETERMINE THE LAST POINT
* IN A GIVEN SERIES OF STATISTICS

':" *

" * REP= # OF POINTS IN THE SERIES
" M= SLOPE
* B= INTERCEPT! *

SUBROUTINE ENDPT(REP, XX,YY,POINT)
REAL XX(REP) ,YY(REP) ,POINT,M,B
INTEGER REP

4" 1 0.

M= (YY(REP)-YY(REP-1))/(XX(REP)-XX( REP-1))
' B=o.

"B=YY(REP-1 )-(M*XX(REP-1))
POINT=( I.-B)/M

RETURN
' END

"o ************************ ****** **** ** ******** ************** *** *

* SUBROUTINE CV: PURPOSE; TO DETERMINE THE 80,85,90,95,99TH
* PERCENTILES OF THE DISTRIBUTION OF
* THE GIVBEN STATISTIC

* REP= # OF POINTS IN SERIES
* M= SLOPE
• B= INTERCEPT
* PER=- PERCENTILE

SUBROUTINE CV(REP,XX,YY)
REAL PERYY(REP+I),XX(REP+I),M,B,P80,PS5,P90,P95,P99
INTEGER REP

.; P80=0 .

P85=0.
P90=0.
P95=0.
DO 10 J=80,95,5

DO 20 K=2,REP
IF(YY(K) .GE.(J/100.))THEN

M=O.

PER=0.
M=(YY(K)-YY(K-1 ) )/(XX(K)-XX(K-1))
6=YY(K-I )-(M*XX(K-1))
PER=( (J/100.)-B)/M
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20 COTINUEGOTO 666

66 IF(J.EG.80)PSO=PER
IF(J.EG.85)P85=-PER
IF(J.EQ.90)P90=PER

P99-0o.
DO 30 K=2,REP

IF(YY(K) .GE.0S99)THEN

M--(YY(K) -YY(K-1 ) )/(XX((K) -XX(K-1))
B=YY(K-1 )-(M*XX(K-1))
PER=-(0.99-B)/M
GOTO 777
END IF

30 CONTINUE

777 P99-PER

WRITEC 3, 800)
800 F0RMT///2Xg' 80,85,90,95999 PERCENTILES '

WRITE(3,902)PSO ,P85,P90 ,P95,P99
902 FORtIAT(2X,5(FIO.7,2X())

RETURN
END

se



PROGRAM POWER
REAL KS,A2,W2,A~,WWBBSSQX(30),Z(30),FX(3O),Y(30)
REAL M2,SD2,ttI,SSSR1SLR2,PIECONST,DIFF(30)
REAL KS95(6) ,A295(6) ,W295(6)
INTEGER N, IERpLOOP,REP
DOUBLE PRECISION SEED
EXTENL GGUBFSgVSRTA9GGEXN96GGF
COMMION NqCONSTqPIEqLOOP

************INITIALI ZATI ON **********

OPEN(3,FILE='NORMOUT' ,STATUS='NEW' ,FORM1='LE'FORMATTED')
WRITE(3, 101)

101 FORtbAT(2Xp' CRITICAL VALUES FOR NOML '

SEED=453689621 .DO
CONST=3.**0 .5
PIE-3. 14159265358
f'IZO

9995 N-N+5
IF(N.GT.30)GOTO 9999
WRITE(39511I)N

511 FORMAT(////2X9' SAMPLE SIZE= '915)
DO 5 1=19N
X( I)=0.
Y( I )0.
Z( I )=.

5 CONTINUE
DO 6 1-1,6

KS95( I )0.
A295(I)=0.
W295(lI)inO.

6 CONTINUE

REP-I1000

DO 10 LOOP=1,REP

2000 DO 20 J-1,N
Y(I )=GGNQF(SEED)
X(I)=(Y(I)*2.)+1.

20 CONTINUE

*.********INITIAL ESTIMATES USING SAMPLE MEAN & STD DEV

51141=0.
-% 51142=0.

DO 30 J-19N
SUMI-SUlR+X(J)

30 CONTINUE

tMt-0.
d ?44-SLN41/N
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DO 40 J-19N
BB-(X( 3) -M4)**2.
S1142=SUM2+ BR

40 CONTINUE

SS=0.
SSG-SLI'2/(N-1)

'-.4 - SS=SS0**0.*5

*************CALL MLE SUBROUTINE

CALL MLE(X,M1,SS,M2,SD2,IER)
IF(IER.EO.1)GOTO 2000
IF(IER.EQ.3)GOTO 2000

*************CALCULATE F(X) AND 5(X)

CALL VSRTA(X,N)

- V DO 85 J=lN
Z (J)=( PIE*(X(3) -M2) )/( SD2*CONST)
FX(J)=(l ./(l .+EX(P(-Z'CJ))))

85 CONTINUE

********a***CALCULATE KS, A(SQ) & W(S0)

CALL STATS(DIFF,FXA2,W2,KS)
IF(N.EQ.5.AND.KS.GT.0.309)kS95(1)=K595(1)+1
IF(N.E0.5.AND.A2.GT.0.d20)A295(1)=A295(1)+1
IF(N.EQ.5.AND.W2.GT.0.096)W295(1)=-W295(1).1
IF(N.EQ. 10.AND.KS.GT.0.230)K595(2)=KSVS(2)41
IF(N.EO.10.AND.A2.6T.0.640)A295(2)=A295(2)41
IF(N.EQ.10.AND.W2.GT.0.095)W295(2)-bJ295(2V+1
IF(N.EO.15.AND.KS.GT.0.I91)KSVS(3)=KS95(3.1I

-V....,IF(N.EQ.15.AND.A2.GT.0.665)A295(3)-S295(3)+1

IF(N. EG*15 .AND.W2 . T .0 .098) W295( 3)=W295( 3)+1
A IF(N.EG.20.AND.KS.GT.0.170)KS95(4)=KS95(4).1

IF(N.E0.20.AN~D.A2.T.0.663)A295(4)-A295(4)41
IF(N.EG.20.AND.W2.GT.0.097)W295(4)b1295(4).1
IF(N.EO.25.AND.KS.GT.0.655)KS95(5)=KS95(5)+1

-r IF(N.EQ.25.AND.A2.GT.0.663)A295(5)-A295(5).1
IF(N.EO.25.fl4D.W2.GT.0.098)W295(5)-W295(5)41
IF(N.EO.30 .AND.KS.GT.0. 141 )KS95(6)=K595(6)41
IF(N.EO.30.AND.A2.6T.0.649)A295(d)=A295(6)+1
IF(N.EG.30.rdJD.W2.GT.0.098)W295(6)=W295(6)+1

'7: ****************END OF MA~JOR LOOP

10 CONTINUE

DO 89 K-1,6
A-0.
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B-0.
C=O .
A-KS95(K)/1000.
8-A295(K)/1000.
C-S295(K)/1000.

WRITE(3,511 )W
WRITE(3,888)ABC

888 FORMAT(//2X,' KS/'= ',F6.39- AZX= --,F6.39" W2X.= -F6.3)
*89 CONTINUE

GOTO 9995
9999 ENDFILE(3)

* CLOSE(3)
END
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SUBROUTINE MLE(X,MMOSS,M2,5D2,IER)
REAL It,SS,M1,M2,M3,SDI,5D2,SDSPIE,X(N),TOL,CONST
REAL CC,DDEE,66,HH,0(4),SUM(6),AEI,AE2

-' INTEGER N,IER
COMMON N,CONST,PIELOOP

********INITIAL VALUES

TOLO0.000005
MlsO.
M2*tl"
M3=0.

-p. 5D3=0
5D2=-SS
5D15SD2+0 .5

********START SECANT MTHD

DO 5 K=1,50

SUM( I)=0.
St4( 2)=0.
DDsO.
EE=O.

DO 10 I=1,N
DD-((XC I)-M1)*PIE)/(SD2*CONST)
EE=( (XC I)-M2)*PIE)/(5D2*CONST)
SUM( I)=SUM( 1)*(EX(P(-DD)/C 1+EX(P(-DD)))
StU(2)-SUM(2)+(EX(P(-EE)/( 1+EX(PC-EE)))

10 CONTINUE

1ST DERIVATIVE FUNCTIONAL VALUES FOR MEAN

CC-PI E/( 5D2*CONST)

0(2)=0.
Q Q9(1)=CC*CN-(2.0*SMl)))

0(2)=CC*(N-(2.0*SUMC 2)))

M3-M2-(Q(2)*( (M2-MI )/CQ(2)-Q( 1))))
AE1=ABS(M3-M2)

SLU(3)-0.
5L344)=0.
SLUl5)-0.
SLE(6)0o.

Ci. 00-0.
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HHO.

DO 20 J=1,lN
66-( (X(J)-M2)*PIE)/(SDl*CONST)
HH-( (X(J)-M2) *PIE)/(SD2*CONST)
SUMl(3)=SUP4(3)+66
St34(4)=SUM(4) +HH
SLHM(5)=Stl(5)+((66*EXP(-GG))/(1 .+EX(P(-GG)))
SLRI(6)=SLI(6)+((HH*EXP(-HH))/(1 .eEXP(-HH)))

20 CONTINUE

************ ST DERIVATIVE FUN4CTIONA~L VALUES FOR STD DEV

A Q(3)=0.
Q(4=0.
O(3)=(1 ./SDI)*(Sttl(3)-(2.0*SLI(5))-N)
O(4)=(1 ./5D2)*(SUM(4)-(2.0*SR1(6))-N)

SD3=SD2-(Q(4)*((SD2-SD1)/(Q(4)-Q(3))))
AE2-ABS( SD3-5D2)

- IF(5D3.LE.0. 1)THEN
IER=-3
GOTO 1200

ENDIF

SD1=5D2
- 5D25-D3

K IF(AEI .LT.TOL.ND.AE2.LT.TOL )GOTO 1000
5 CONTINUE

IF(K.GE.50.AND.AE1 .GT.TOL.OR.AE2.GTMTOL)THEN
I ER= 1
GOTO 1200

ENDIF
1000 IER=-0

1200 RETURN

END
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SUBROUINESAT(IFFA,2,S

I CNTGE

DO 20 I=,N

2 CONTINUE

TWO=0.
0=0.
00=0.

4. ONE=ABS(FX( 1)-GO)
TWO=ABS(FX( 1)-Qoo)
IF(ONE.GT.TWO)THEN

DIFF( I)=ONE
ELSE

DIFF(I )=TWO
ENDIF

10 CONTINUE

KS-=0.
DO 20 I=1,N

IF(DIFF(I) .GT.KS)KS=-DIFF(I)
20 CONTINUE

-C ********CALCULATE A(SQ) STATISTIC

DO 30 I=1,N

30 CONTINUE

A2=0O.
A2-( -N) -( 54./N)

********CALCULSTE W(S0) STATISTIC

5111=0.
DO 40 I=1,N

Stj-SLM+(FX()-((2.*I)-1.)/(2.*N))**2.
40 CONTINUE

4- W2-0.
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W2=(1 ./(12.*N))+SUM
*

RETURN
END

'a.4..
-Ia.
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a.

95

**. *.'~ C a - a - - - .

S a 4 - a a -a a - 4 a



Vita

John D. Yoder was born on 1 February 1950, in Portland,

Oregon. After graduating from high school, he enlisted in the

U.S. Air Force. He spent eight years in the communications

service and eventually became a Base Communications Center

Supervisor. He seperated from the Air Force in 1976 in order

to pursue his goal of a college degree. He itained a

Bachelor of Science degree in the Physical S rices from

Portland State University in 1979. He received ; commision

as a 2nd Lieutenant upon graduation and entered t... Air Force

again in January of 1980. His assignment prior to entering

the Air Force Institute of Technology in June of 1982 was to

the 3246th Test Wing, Eglin AFB where he was placed in charge

of the Wings' Management Information System.

Permanent Address: 1355 Evergreen N.E.
Salem, Oregon 97301

a.

- --- - 9,..



Uiicl Cied
SECURITY CLASSIF-ICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Is~) RhPOPI SLCRITY CLASSIFICATION 1b. RESTRICTIVE MARK(INGS

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVANI ABILITY OF REPORT

2b DiCLASSIFICATION/DOWNGRADING SCHEDULE Approved foi, public rele~ise;
distribution mlhimi ted

4. PEHFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6s, NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 72. NAME OF MONITORIN6~ ORGANIZATION

JCoil00i of Engineering Iapwbe

Ai.- i*r-e Institute of Tlchnoloi~ AITE
6c. ADDRESS I(ty. State and ZIP Code) 7b. ADDRESS (City, State n~d ZIP Code)

hi'fit -Pal terson k1"d, Oniio 45433

Be NAME OF FUNDING/SPONSORING 8sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZAT ION (i (Iapplicable)

BC ADDRESS (t't. Stt and ZIP Code) 10. SOURCE OF FUNDIN., NOS._____

PROGRAM PIIOJECT TASK WORK UNIT

ELEMENT NO. NO. NO. NO.

John iU. ;oder, -it., US3AF
13s, TYPE OF REPORT 13b. TIME COVERED (1.DT FRPR Y o 15PAGE COUNT

14_ATFREOT___M.,Dy 107
16 SUPPLEMENTARY NOTATION -. )%V4 -

17 COSATI CODES 18S. S UBJE CT T E RMS (Con tinue on reverse ifn~wI, &16 itb"Ii

FIELD GIROUP SUe. GR. Statistical Functions, Probabi'[ty Distribution Functions,

Statistical Analysis Theory
19 ABSTRACT i tintinue on reverse it necessary and identify by block number)

J, .1 ::,L) iKuLi..OGWROV-.iV1IHNhOV, ANDERSON-J).RLING i. (,1F~dVER-V0N MI~S
T.2 *u Ll OIJii DI6TniIBLJT10iN WITH UNKNOI... LUCATiONi AND

ian joodraff

20 DISTRIeUTION AVAILABILITY OF ABSTRACT 121. AB3STRACT SECURIT :LASSIF ICATION

UNC-LASSIFIEIUNLIMITEDflX SAME AS APT D DTIC USERS C UNCLAhSSI I11

22&i~ NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMB) R 22c. OFFICE SYMBOL

1- riat. k..iOruff (Include Area Code)T' N.
it ;.rn T ,'r n fe sgo r 5 - r15 33 P'IT L

00 FORM 1473. 83 APR EDITION OF I JAN 73 IS OBSOLETE.
1 ITY CLASSIF ICAT ION OF THIS PAI

7,



SECURITY CLASSIF ICATION OF THIS PAGE

T ne ..: 0of m :xi'.1uv1 likelihood is used to det, m::ine invariant
c:'A. ,t of the ulnI.tnown location and scale par t ,is of aI',i- "L'Oln the Logistic distribution. The part a derivatives

of trit livelihood furaotion c an not be solved ex. icitly, there-
f' i t' . Jecarnt metnodl is used to iteratively d. rrlnine the roots
of t , jartial derivatives. Using these estim , . modified
,.ol o .,rov-.;iirnov, Anderson-Darling and Cramer -,n Mises statistips
Lir]t -'i lated for a U-iven sample. This procedI i is repeated
5u.J t ,i:et far saiple sizes of n= 5(5)30. The Afh, 85th, 90th,
95tii ,id 99tn percentiles of the distribuition ( 1" each statistic,
fo . a Irple size, is then calculated. Thct values are then
$t.n,, t, 1 generate tables of c~itical values for 1 .e Logistic distri-
bt4tion with unknown location and scale paramete: .. A power com-
i ri,:)n oetween tne three tests is performed' usi qg samples from

V orioc : distributions.

The ;e -ant method reqqires "good" initial esti-i.t.es of the para-
meters in order to converge. This thesis uses te sample mean
and st-indard deviation as initial estimates. Ii four of the total
30,u) samples used, these initial estimates di.: not allow con-
ver:errve. Nhile discarding these samples biase: the theoretical
rezi]t. , it was deter.ined that discarding thest sai.iples would
no,, bi.se5 tre nur: erical results. This does ho .ver place a
,onitrijnt In using the Jecant method with resp, -t to obtaining
maxi:lu:. likelihood estimates of the parameters. The power of
the c(! Lests for non-symmetrically convex distri! ttions is very
good. However, for symmetrically convex distri: ttions, the
powe(r ran;cs from moderate to only slightly mort. than the
si ,mi I ance level.

PIPo 
.



m 7; l

'.. 16

14~

"a

-'Ap

. 453

0 4p

.4 Am*.,


